Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioessays ; 46(5): e2400012, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38436469

RESUMEN

Both the concept of a Darwinian tree of life (TOL) and the possibility of its accurate reconstruction have been much criticized. Criticisms mostly revolve around the extensive occurrence of lateral gene transfer (LGT), instances of uptake of complete organisms to become organelles (with the associated subsequent gene transfer to the nucleus), as well as the implications of more subtle aspects of the biological species concept. Here we argue that none of these criticisms are sufficient to abandon the valuable TOL concept and the biological realities it captures. Especially important is the need to conceptually distinguish between organismal trees and gene trees, which necessitates incorporating insights of widely occurring LGT into modern evolutionary theory. We demonstrate that all criticisms, while based on important new findings, do not invalidate the TOL. After considering the implications of these new insights, we find that the contours of evolution are best represented by a TOL.


Asunto(s)
Evolución Biológica , Transferencia de Gen Horizontal , Filogenia , Animales
2.
RNA Biol ; 20(1): 48-58, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36727270

RESUMEN

Automated genome annotation is essential for extracting biological information from sequence data. The identification and annotation of tRNA genes is frequently performed by the software package tRNAscan-SE, the output of which is listed for selected genomes in the Genomic tRNA database (GtRNAdb). Here, we highlight a pervasive error in prokaryotic tRNA gene sets on GtRNAdb: the mis-categorization of partial, non-canonical tRNA genes as standard, canonical tRNA genes. Firstly, we demonstrate the issue using the tRNA gene sets of 20 organisms from the archaeal taxon Thermococcaceae. According to GtRNAdb, these organisms collectively deviate from the expected set of tRNA genes in 15 instances, including the listing of eleven putative canonical tRNA genes. However, after detailed manual annotation, only one of these eleven remains; the others are either partial, non-canonical tRNA genes resulting from the integration of genetic elements or CRISPR-Cas activity (seven instances), or attributable to ambiguities in input sequences (three instances). Secondly, we show that similar examples of the mis-categorization of predicted tRNA sequences occur throughout the prokaryotic sections of GtRNAdb. While both canonical and non-canonical prokaryotic tRNA gene sequences identified by tRNAscan-SE are biologically interesting, the challenge of reliably distinguishing between them remains. We recommend employing a combination of (i) screening input sequences for the genetic elements typically associated with non-canonical tRNA genes, and ambiguities, (ii) activating the tRNAscan-SE automated pseudogene detection function, and (iii) scrutinizing predicted tRNA genes with low isotype scores. These measures greatly reduce manual annotation efforts, and lead to improved prokaryotic tRNA gene set predictions.


Asunto(s)
Genoma , ARN de Transferencia , ARN de Transferencia/genética
3.
Biol Rev Camb Philos Soc ; 98(2): 584-602, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36366773

RESUMEN

During the last century enormous progress has been made in the understanding of biological diversity, involving a dramatic shift from macroscopic to microscopic organisms. The question now arises as to whether the Natural System introduced by Carl Linnaeus, which has served as the central system for organizing biological diversity, can accommodate the great expansion of diversity that has been discovered. Important discoveries regarding biological diversity have not been fully integrated into a formal, coherent taxonomic system. In addition, because of taxonomic challenges and conflicts, various proposals have been made to abandon key aspects of the Linnaean system. We review the current status of taxonomy of the living world, focussing on groups at the taxonomic level of phylum and above. We summarize the main arguments against and in favour of abandoning aspects of the Linnaean system. Based on these considerations, we conclude that retaining the Linnaean Natural System provides important advantages. We propose a relatively small number of amendments for extending this system, particularly to include the named rank of world (Latin alternative mundis) formally to include non-cellular entities (viruses), and the named rank of empire (Latin alternative imperium) to accommodate the depth of diversity in (unicellular) eukaryotes that has been uncovered. We argue that in the case of both the eukaryotic domain and the viruses the cladistic approach intrinsically fails. However, the resulting semi-cladistic system provides a productive way forward that can help resolve taxonomic challenges. The amendments proposed allow us to: (i) retain named taxonomic levels and the three-domain system, (ii) improve understanding of the main eukaryotic lineages, and (iii) incorporate viruses into the Natural System. Of note, the proposal described herein is intended to serve as the starting point for a broad scientific discussion regarding the modernization of the Linnaean system.


Asunto(s)
Biodiversidad , Eucariontes , Filogenia
4.
PLoS One ; 11(7): e0158342, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27454314

RESUMEN

Based on (i) an analysis of the regularities in the standard genetic code and (ii) comparative genomics of the anticodon modification machinery in the three branches of life, we derive the tRNA set and its anticodon modifications as it was present in LUCA. Previously we proposed that an early ancestor of LUCA contained a set of 23 tRNAs with unmodified anticodons that was capable of translating all 20 amino acids while reading 55 of the 61 sense codons of the standard genetic code (SGC). Here we use biochemical and genomic evidence to derive that LUCA contained a set of 44 or 45 tRNAs containing 2 or 3 modifications while reading 59 or 60 of the 61 sense codons. Subsequent tRNA modifications occurred independently in the Bacteria and Eucarya, while the Archaea have remained quite close to the tRNA set as it was present in LUCA.


Asunto(s)
Anticodón , Codón , Evolución Molecular , ARN de Transferencia/genética , Archaea/genética , Bacterias/genética , Eucariontes/genética , Código Genético , Variación Genética
5.
Life (Basel) ; 5(1): 230-46, 2015 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-25607813

RESUMEN

The "RNA world" hypothesis is seen as one of the main contenders for a viable theory on the origin of life. Relatively small RNAs have catalytic power, RNA is everywhere in present-day life, the ribosome is seen as a ribozyme, and rRNA and tRNA are crucial for modern protein synthesis. However, this view is incomplete at best. The modern protein-RNA ribosome most probably is not a distorted form of a "pure RNA ribosome" evolution started out with. Though the oldest center of the ribosome seems "RNA only", we cannot conclude from this that it ever functioned in an environment without amino acids and/or peptides. Very small RNAs (versatile and stable due to basepairing) and amino acids, as well as dipeptides, coevolved. Remember, it is the amino group of aminoacylated tRNA that attacks peptidyl-tRNA, destroying the bond between peptide and tRNA. This activity of the amino acid part of aminoacyl-tRNA illustrates the centrality of amino acids in life. With the rise of the "RNA world" view of early life, the pendulum seems to have swung too much towards the ribozymatic part of early biochemistry. The necessary presence and activity of amino acids and peptides is in need of highlighting. In this article, we try to bring the role of the peptide component of early life back into focus. We argue that an RNA world completely independent of amino acids never existed.

6.
J Mol Evol ; 77(4): 170-84, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23877342

RESUMEN

The genetic code has a high level of error robustness. Using values of hydrophobicity scales as a proxy for amino acid character, and the mean square measure as a function quantifying error robustness, a value can be obtained for a genetic code which reflects the error robustness of that code. By comparing this value with a distribution of values belonging to codes generated by random permutations of amino acid assignments, the level of error robustness of a genetic code can be quantified. We present a calculation in which the standard genetic code is shown to be optimal. We obtain this result by (1) using recently updated values of polar requirement as input; (2) fixing seven assignments (Ile, Trp, His, Phe, Tyr, Arg, and Leu) based on aptamer considerations; and (3) using known biosynthetic relations of the 20 amino acids. This last point is reflected in an approach of subdivision (restricting the random reallocation of assignments to amino acid subgroups, the set of 20 being divided in four such subgroups). The three approaches to explain robustness of the code (specific selection for robustness, amino acid-RNA interactions leading to assignments, or a slow growth process of assignment patterns) are reexamined in light of our findings. We offer a comprehensive hypothesis, stressing the importance of biosynthetic relations, with the code evolving from an early stage with just glycine and alanine, via intermediate stages, towards 64 codons carrying todays meaning.


Asunto(s)
Aminoácidos/química , Aminoácidos/genética , Código Genético , Modelos Genéticos , Aptámeros de Péptidos/química , Aptámeros de Péptidos/genética , Codón , Evolución Molecular , Biosíntesis de Proteínas/genética , Biosíntesis de Proteínas/fisiología
7.
J Mol Evol ; 73(3-4): 59-69, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22076654

RESUMEN

The origin of the genetic code is a central open problem regarding the early evolution of life. Here, we consider two undeveloped but important aspects of possible scenarios for the evolutionary pathway of the translation machinery: the role of unassigned codons in early stages of the code and the incorporation of tRNA anticodon modifications. As the first codons started to encode amino acids, the translation machinery likely was faced with a large number of unassigned codons. Current molecular scenarios for the evolution of the code usually assume the very rapid assignment of all codons before all 20 amino acids became encoded. We show that the phenomenon of nonsense suppression as observed in current organisms allows for a scenario in which many unassigned codons persisted throughout most of the evolutionary development of the code. In addition, we demonstrate that incorporation of anticodon modifications at a late stage is feasible. The wobble rules allow a set of 20 tRNAs fully lacking anticodon modifications to encode all 20 canonical amino acids. These observations have implications for the biochemical plausibility of early stages in the evolution of the genetic code predating tRNA anticodon modifications and allow for effective translation by a relatively small and simple early tRNA set.


Asunto(s)
Anticodón , Codón sin Sentido , Evolución Molecular , Modelos Genéticos , Archaea/genética , Bacterias/genética , Emparejamiento Base , Código Genético , Biosíntesis de Proteínas , ARN de Transferencia/genética , ARN de Transferencia/metabolismo
8.
Artículo en Inglés | MEDLINE | ID: mdl-21358008

RESUMEN

The genetic code is known to have a high level of error robustness and has been shown to be very error robust compared to randomly selected codes, but to be significantly less error robust than a certain code found by a heuristic algorithm. We formulate this optimization problem as a Quadratic Assignment Problem and use this to formally verify that the code found by the heuristic algorithm is the global optimum. We also argue that it is strongly misleading to compare the genetic code only with codes sampled from the fixed block model, because the real code space is orders of magnitude larger. We thus enlarge the space from which random codes can be sampled from approximately 2.433 × 10(18) codes to approximately 5.908 × 10(45) codes. We do this by leaving the fixed block model, and using the wobble rules to formulate the characteristics acceptable for a genetic code. By relaxing more constraints, three larger spaces are also constructed. Using a modified error function, the genetic code is found to be more error robust compared to a background of randomly generated codes with increasing space size. We point out that these results do not necessarily imply that the code was optimized during evolution for error minimization, but that other mechanisms could be the reason for this error robustness.


Asunto(s)
Algoritmos , Biología Computacional/métodos , Código Genético , Modelos Genéticos , Evolución Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...